
XVI Workshop on Global Optimization 2025 1

Embedding neural networks
into optimization models
with GAMSPy

André Schnabel,1 Hamdi Burak Usul,2

1GAMS Software GmbH, Germany, aschnabel@gams.com

2GAMS Software GmbH, Germany, busul@gams.com

Abstract GAMSPy provides Python’s flexibility with GAMS’s modeling power.
It bridges the gap between machine learning (ML) and traditional
mathematical modeling by offering auxiliary classes for common neu-
ral network (NN) layers and activation functions, automatically con-
verting network architectures into GAMSPy model expressions. In
this article, we demonstrate how GAMSPy enables embedding a pre-
trained NN into an optimization model.

Keywords: Modeling Languages, Machine Learning, Neural Networks

1. Introduction

The General Algebraic Modeling System (GAMS) started as the first do-
main specific language for mathematical modeling in the 1970s at the World
Bank. Over the years, the algebraic modeling language evolved and the
GAMS distribution grew with many supporting software products. The
Python package GAMSPy1 is a more recent addition, and allows specify-
ing models directly in Python in a way that closely resembles the design
philosophy of the GAMS language.

While using ML models to generate or pre-process input parameters
might be sufficient for some problems, many problems require a tighter in-

1https://gamspy.readthedocs.io

https://gamspy.readthedocs.io

2 André Schnabel, Hamdi Burak Usul,

tegration of machine learning and optimization models by embedding the
ML model. To support this, GAMSPy was extended with the formulations
package2 package offering various automatic reformulations.

Similar packages for other modeling solutions include OMLT for Pyomo
and JuMP [2], gurobi-machinelearning for gurobipy, MathOptAI.jl for
JuMP [4], PySCIPOpt-ML for PySCIPOpt [5]. A good comparison of the
supported layer types can be found in [3]. In previous benchmarks, the
GAMS execution system utilized by GAMSPy often outperforms Pyomo
and JuMP in model generation times.3

2. Surrogate model example

The following model is an adaption of the section 4.1 of Bhosekar and Ier-
apetritou [1]. It is a simple artificial problem that exhibits basic properties
of real-world problems found in chemical engineering. A stream of input
material A [mol

h] is filled into a reactor r and then converted into two out-

put products B and E by a separator module s. The demands of B [mol
h]

and E [mol
h] are known and the task is to choose reactor and separator

modules that minimize the overall costs. The reactors differ by volume Vr

[m3] and price cr [k$]. The separators are assumed to be ideal, and are
characterized by bounds lbs and ubs on the amount of throughput they
can process per hour and price cs. Table 1 shows the specifications of the
available reactor and separator modules.

Table 1: Design options for reactor and separator.

Options Reactor (m3) cr (k$) Separator (FA mol/h) cs (k$)

Option 1 5 400 30–50 300
Option 2 20 850 40–70 720
Option 3 35 1200 60–100 980
Option 4 50 1650 90–140 1210

The solution methodology in [1] involves obtaining the feasibility con-
straints via a simulation implemented as nonlinear program. When one
instead uses as surrogate model (a NN trained on the simulation) to deter-
mine the probability of feasibility for a given reactor volume V , input flow
rate Fa, and demanded output flow rates FB and FE , the remaining model
can be expressed as the following mixed-integer linear program (MILP):

2https://gamspy.readthedocs.io/en/latest/reference/gamspy.formulations.html
3As shown in "Performance in Optimization Models" at https://tinyurl.com/gamsperf

https://gamspy.readthedocs.io/en/latest/reference/gamspy.formulations.html
https://tinyurl.com/gamsperf

Embedding neural networks into optimization models with GAMSPy 3

minimize
∑
r

cr · yr +
∑
s

cs · ys + ca · Fa (1)

s.t.
∑
r

yr = 1,
∑
s

ys = 1 (2)

V =
∑
r

Vr · yr (3)

NN(V, Fa, FB , FE) ≥ 0.99 (4)
Fa ≤ ubs + (1− ys) ·M ∀s (5)
Fa + (1− ys) ·M ≥ lbs ∀s (6)
yr ∈ {0, 1}, ys ∈ {0, 1}, Fa ∈ R+, V ∈ R+ (7)

The objective function (1) computes the total cost incurred by the choice
of reactor r and selector s plus the cost for the input material flow rate
Fa. Constraints (2) ensure exactly one reactor and exactly one separator is
chosen. Equation (3) links the auxiliary variable V for the available volume
with the volume of the chosen reactor. Constraint (4) uses the embedded
NN to predict a feasibility probability for a given tuple of reactor volume
V , input flow rate Fa and output material flow rate demands FB and FE .
The feasibility prediction acquired through NN inference must be at least
99%. Equations (5) and (6) make sure the input material flow rate is inside
the operational bounds of the chosen selector using a bigM-formulation.
The decision variable domains follow in (7), declaring the input material
flow rate and available volume auxiliary variable as continuous, and the
reactor- yr and selector-choice ys indicator variables as binary.

To solve the model with a MILP solver, the parameterized NN term NN
in (5) must be expanded into a set of additional constraints and variables,
such that the left-hand side of (5) evaluates to the value acquired by doing
a forward propagation of input vector (V, Fa, FB , FE) through the network
layers. The NN is sequential and consists of 4 linear layers connected with
ReLU and sigmoid as activation functions for the inner layers and output
layer respectively. Listing 1.1 shows relevant Python code for including the
trained NN inside the model. The full source code is available on GitHub4.

4https://github.com/GAMS-dev/surrogate-model

https://github.com/GAMS-dev/surrogate-model

4 André Schnabel, Hamdi Burak Usul,

model = nn.Sequential(nn.Linear(4, 10), nn.ReLU(), nn.Linear (10, 10),
nn.ReLU(), nn.Linear (10, 15), nn.ReLU(), nn.Linear (15, 1),
nn.Sigmoid ())

drop_sigmoid_model = nn.Sequential (*list(model.children ())[: -1])
t r a i n network
...
m = gp.Container ()
input t o n e u r a l network : a0 =[V , Fa , Fb , Fe]
a0 = gp.Variable(m, name="a0", domain=gp.math.dim ([4]))
a1 = gp.Variable(m, name="a1", domain=gp.math.dim ([4])) # a0 normal ized
normalize_input [...] = a1 == (a0 - x_mean_par) / x_std_par
...
seq_formulation = gp.formulations.TorchSequential(m, drop_sigmoid_model)
z5, _ = seq_formulation(a1)
check_feasibility [...] = z5[0] >= 4.59511985013459 # 0 . 9 9 p r o b a b i l i t y

Listing 1.1: Code excerpt for linking the trained NN into the MILP

3. Numerical results

The solver Baron solves the instance from Table 1 to optimality within
0.06 seconds given a white-box monolithic MINLP whereas CPLEX solves
the surrogate model MIP in only 0.03 seconds. Solution quality is iden-
tical, as the loss of precision from the NN approximation in (4) does not
cut the optimal solution from the feasible region. Besides computational
gains, embedding NN has more advantages. Simulations are not always
available in closed form expression, i.e., when using a proprietary simu-
lator software. Using NN also works when only historical data from the
physical plant is available and no simulation model exists.

4. Summary

This article showed how to solve a basic problem by formulating it as a
MILP where a NN was integrated as the left-hand side of a constraint. The
NN was implemented in PyTorch and the optimization model in GAMSPy.
The GAMSPy package formulations was used to replicate the structure
of the NN in the MILP. Integrating NN and optimization models can be
used for many other applications like adversarial input generation, model
verification, and customized training of NN.

References

[1] Atharv Bhosekar and Marianthi Ierapetritou. Modular design optimization
using machine learning-based flexibility analysis. Journal of Process Control,
90:18–34, 2020.

Embedding neural networks into optimization models with GAMSPy 5

[2] Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin
Tsay, Carl D Laird, and Ruth Misener. Omlt: Optimization & machine learning
toolkit. Journal of Machine Learning Research, 23(349):1–8, 2022.

[3] Oscar Dowson, Robert B Parker, and Russel Bent. Mathoptai.jl: Embed trained
machine learning predictors into jump models. arXiv preprint arXiv:2507.03159,
2025.

[4] Robert B. Parker, Oscar Dowson, Nicole LoGiudice, Manuel Garcia, and Rus-
sell Bent. Formulations and scalability of neural network surrogates in nonlin-
ear optimization problems. arXiv preprint arXiv:2412.11403, 2024.

[5] Mark Turner, Antonia Chmiela, Thorsten Koch, and Michael Winkler.
Pyscipopt-ml: Embedding trained machine learning models into mixed-integer
programs. In International Conference on the Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pages 218–234. Springer,
2025.

	Embedding neural networks into optimization models with GAMSPy

